Signal Processing of MEMS Gyroscope Arrays to Improve Accuracy Using a 1st Order Markov for Rate Signal Modeling
نویسندگان
چکیده
This paper presents a signal processing technique to improve angular rate accuracy of the gyroscope by combining the outputs of an array of MEMS gyroscope. A mathematical model for the accuracy improvement was described and a Kalman filter (KF) was designed to obtain optimal rate estimates. Especially, the rate signal was modeled by a first-order Markov process instead of a random walk to improve overall performance. The accuracy of the combined rate signal and affecting factors were analyzed using a steady-state covariance. A system comprising a six-gyroscope array was developed to test the presented KF. Experimental tests proved that the presented model was effective at improving the gyroscope accuracy. The experimental results indicated that six identical gyroscopes with an ARW noise of 6.2 °/√h and a bias drift of 54.14 °/h could be combined into a rate signal with an ARW noise of 1.8 °/√h and a bias drift of 16.3 °/h, while the estimated rate signal by the random walk model has an ARW noise of 2.4 °/√h and a bias drift of 20.6 °/h. It revealed that both models could improve the angular rate accuracy and have a similar performance in static condition. In dynamic condition, the test results showed that the first-order Markov process model could reduce the dynamic errors 20% more than the random walk model.
منابع مشابه
Signal Processing Technique for Combining Numerous MEMS Gyroscopes Based on Dynamic Conditional Correlation
A signal processing technique is presented to improve the angular rate accuracy of Micro-Electro-Mechanical System (MEMS) gyroscope by combining numerous gyroscopes. Based on the conditional correlation between gyroscopes, a dynamic data fusion model is established. Firstly, the gyroscope error model is built through Generalized Autoregressive Conditional Heteroskedasticity (GARCH) process to i...
متن کاملA MEMS Capacitive Microphone Modelling for Integrated Circuits
In this paper, a model for MEMS capacitive microphone is presented for integrated circuits. The microphone has a diaphragm thickness of 1 μm, 0.5 × 0.5 mm2 dimension, and an air gap of 1.0 μm. Using the analytical and simulation results, the important features of MEMS capacitive microphone such as pull-in voltage and sensitivity are obtained 3.8v and 6.916 mV/Pa, respectively while there is no...
متن کاملAnalysis of Dynamic Performance of a Kalman Filter for Combining Multiple MEMS Gyroscopes
In this paper, the dynamic performance of a Kalman filter (KF) was analyzed, which is used to combine multiple measurements of a gyroscopes array to reduce the noise and improve the accuracy of the individual sensors. A principle for accuracy improvement by the KF was briefly presented to obtain an optimal estimate of input rate signal. In particular, the influences of some crucial factors on t...
متن کاملA Novel Sampling Approach in GNSS-RO Receivers with Open Loop Tracking Method
Propagation of radio occultation (RO) signals through the lower troposphere results in high phase acceleration and low signal to noise ratio signal. The excess Doppler estimation accuracy in lower troposphere is very important in receiving RO signals which can be estimated by sliding window spectral analysis. To do this, various frequency estimation methods such as MUSIC and ESPRIT can be adopt...
متن کاملANFIS Approach for Tracking Control of MEMS Triaxial Gyroscope
In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) based control is proposed for the tracking of a Micro-Electro Mechanical Systems (MEMS) gyroscope sensor. The ANFIS is used to train parameters of the controller for tracking a desired trajectory. Numerical simulations for a MEMS gyroscope are looked into to check the effectiveness of the ANFIS control scheme. It proves that the sy...
متن کامل